CONTROLS G
TECHNIQUES il

High Speed Labeling using the PTi-210

Objective

Develop an application solution to accurately and repeatably place labels on moving products at high cycle-rates.

Overview

The PTi-210 module can be easily configured to perform high-speed labeling applications. Essential features
used in the PTi-210 are the Capture Object, the Queue Object, and Program Multitasking. Each of these
features will be discussed individually, and then used to create a fully functional labeling application. After a
description of each of the core components, a section is provided to show the application in a graphical or flow
chart form. From this flow chart we will develop the actual program code. A detailed explanation of the code
will follow each program to facilitate understanding of the instructions. See the figure below for an example of
an “in- line” labeling machine.

U - f’ﬁ,-ﬂ" Labels

Figure 1

Capture Object
The Capture Object allows the PTi-210 to accurately capture the position of the master encoder at the exact
time a product passes the incoming product sensor. To do this, the product sensor must be assigned to any
one of the digital inputs located on the PTi-210 module itself (NOT to the M700 inputs or SI-I/O inputs).

Nidlea

Control Techniques a division of Nidec Motor Corporation
7078 Shady Oak Road, Eden Prairie, MN 55344-3505 USA
T: +1 952 995-8000 www.controltechniques.us

CaptureEnable —— Capture.#

CaptureActivate ———* —* CaptureTriggered

CaptureReset ——

Captured Data

Time

Command Position
Feedback Position Figure 2 — Capture Object
Master Position

The sources and destinations associated with the capture object can either be accessed through the
Assignments screen or through a user program. This application will access the capture sources and
destinations using both of these methods to operate the capture object.

In order to capture the position of the master encoder when a product passes the sensor, the PTi-210 module
digital input that the product sensor is wired to must be assigned to the CaptureActivate destination found on
the PowerTools Studio Assignments screen. Figure 8 shows all of the assignments used in the application. A
User Program will deal with enabling and resetting the capture object.

When the capture object is enabled, the first rising-edge of the CaptureActivate signal will engage the
capture, and the Time, Motor Command Position, Motor Feedback Position, and the Master Position will be
captured in less than 2 pusec. Once the capture has taken place, the CaptureTriggered function will turn on
indicating that data has been captured and it is available for use in the application. CaptureReset is then
activated to prepare the system for the next capture, at which time the CaptureTriggered signal turns off
automatically.

Below is a timing diagram that details how the functions associated with the capture object operate.

CONTROL <
TECHNIQUES

CaptureEnable

CaptureActivate

CaptureTriggered
CaptureReset |

Figure 3 — High-Speed Capture Timing Diagram

Queue Object
The Queue is used in applications where multiple products exist between the incoming product sensor and
the location where the process takes place (i.e. applying labels, bar code printing, vision inspection, part
rejection, etc.). Up to eight Queue objects can be used simultaneously to control all of the processes in your
application. Below is a diagram of the Queue Object.

Destinations Sources
Queue # Exit
Datal]
Clear » Size Empty
Offset
c Full Level
ompare__ Source Select & Full
Enable Name
— & Overflow
Data In Data Out
Quzue Data =X Y = Qusue Dats

CONTROL <
TECHNIQUES

Figure 4 — Queue Object

The Queue object is used to store the captured master positions for each product that comes by the product
sensor. Similar to the Capture Object, the Queue sources and destinations can be controlled through the
assignments screen or in the User Program.

Note: Because the Queue uses captured data to initiate the index to apply the label, the product must not
move relative to the master encoder once it has passed the incoming product sensor. If the product does
move with respect to the master encoder, the label will be applied at the wrong time (or wrong position).

The following parameters must be entered into the Queue Setup Screen:
Name — Assign a name to each specific queue

Queue Size - This is the maximum number of products that can be stored in the Queue at a time. If the number
of products entered into the queue reaches this value, the QueueOvervflow flag will activate. This value should
be greater than the maximum number of products that can possibly be between the product sensor and the
label head.

Queue Offset - The Queue Offset is a value that is added to the data put into the queue (captured position of
master encoder in this example). The sum of the two values is called the QueueExitPosn. When the Source
parameter is equal to the QueueExitPosn, the QueueExit function will activate. The QueueExit is what is used
to initiate the index to apply the label. For this application, the Queue Offset is the measured distance between
the product sensor and the label application point.

Full Level - This is a flag that notifies the user that a certain number of products are in the queue. Use this flag to
notify the user that the queue is running at a certain “capacity”.

Source - The Source determines which parameter to compare to the QueueExitPosn to activate the QueueExit
function. If set to FeedbackPosn, the QueueExitPosn is compared to the Motor Position Feedback parameter.
If set to MasterPosn , then QueueExitPosn is compared to the Master Feedback Position parameter, and if set
to CommandPosn, then QueueExitPosn is compared to the Motor Commanded Position. When the Source
and the QueueEXxitPosn are equal, the QueueExit function activates.

Below is an example of the Queue Setup screen. The example uses two queues. The first queue controls the
label application, and the second controls a deadband on the product sensor.

CONTROL <
TECHNIQUES

The label queue has a QueueSize of 12, indicating that there should never be more than 12 products between
the product sensor and the label head. The QueueOffset is set to 10.0000 telling us that the distance between
the sensor and the label head is 10 master units.

The deadband queue shows that there should never be more than 2 products in the queue, and that the
QueueExit function will turn on 0.25 master units after the product passes the sensor. The deadband queue
will be discussed further later in this application tool.

-
-

Mumber of Queue Units |2

B & Mame [ueuesize FullLewvel Source Huevuelffzet
0 LabelQueue ™12 & ¢ Y MasterPosn ¥ 10.0000

1 DeadbndQue 2. 2, “MasterPosn ¥ AREL

Figure 5 — Example Queuing Setup Screen

|

Following is a detailed view of the internal workings of the queue object. It shows how each of the queue
parameters is used and how each source and destination functions.

CONTROL <
TECHNIQUES

IF (# of Queue
Objects = 0)

CQueusEmpty

QueueClear Set # of Queue Objects =0
g and clear data in qfleue IF (3 of Queue OUEUEF:"
Objects = or = Full Level)
Dataim
Source Select:
M Ful
Level MasterPosn
FeedbackPosn
CommandPosn
-
Data Out \
CueueExit
Comparitor
CompareEnable
IF (£ of Queus QueueOverflow

Objects = Queue Size)

Figure 6 — Internal Functionality of Queue Object

CONTROL <
TECHNIQUES

Graphic with key dimensions and details

Assignments Used

Queus Offset

Labeling
Gueue Offset Products
In Queue

Products Exited
From Queue

CONTROL
TECHNIQUES

Source
Index
~ Inputs
~ DrivelQ
Drivel0.1.In
Drivel0.2.In
Drivel0.3.0n
~ Drivelnput
Drivelnput.d
Drivelnput.5
Drivelnput.6
~ Modulelnput
Modulelnput.i
Modulelnput.2
Modulelnput.3
Jog
Master
PLS
Position
Profiles
Program
w Queue
~ Queued
Queue0.CQueueExit
Queue..QueucEmpty
Cueue.0.QueueFull
Cueue0.Queuelverflow
~ Queuel
Cueue.1.Queuekxit
Queue.l.QueueEmpty
Cueue.1.QueueFull
Queue.1.Cueuelverflow
Rarmps
RealTimeProgram
Selector
Status

o

Aizzigned to Palarity

= Program.0.Initiate Active On
= Capture.0.Capturefct.. Active On

= |ndex.0.SensorTrigger Active On
= Drivel0.1.0ut Active On
= Drivel0.2.0ut Active On
= Drivel0.3.0ut Active On
= Drivel0.1.0ut Active On
= Drivel0.2.0ut Active On
= Drivel0.3.0ut Active On

Destination
Index4d
Index3
Indext
Index7
Index.ResetProfileLimited
Jog
Master

~ Outputs

w DrivelO
v Drivel0.1.0ut

~ Drivel0.2.0ut

» Drivel0.3.0ut

DriveRelay.7
ModuleQutput
PID
PLS

Position

~ Profiles

ProfilerD
Profilerl

~ Program

~ Program0
Program.0.Initiate
Program.0.5top

Queue

Ramps

RealTimeProgram

Selector

DriveAnalogln

Status

Timer

TorqueMaode

VirtualMaster

Figure 8 — Assignments Screen

£

Set From

= Cueue0.QueueEmpty
4= Queue.l.QueueEmpty
= Queue.0.QueueFull
- Cueue.1.QueueFull

- Cueue0.QueneCverfl...
= Cueue1.QueueCverfl..,

= Nodulelnput.l

Polaritby

Active On
Active On
Active On
Active On
Active On
Active On

Active On

The most important assignment used in this application is the Modulelnput.2 to Capture.0.CaptureActivate
assignment. In this example, the product sensor is wired to Modulelnput.2. The sensor could be wired to any
Module input, but NOT to a drive input. The drive digital inputs cannot perform the high-speed position capture

the same way that the module inputs can.

Modulelnput.1 is used to start ProgramO0 which in-turn starts the other two programs.

CONTROL <
TECHNIQUES

The Queue status bits are assigned to the Drive and Module Outputs to give the user some indication of how
the queue is functioning. The example application has chosen to assign the QueueEmpty from both queues
to DrivelO.1.0ut (the first drive digital output), QueueFull from both queues to DrivelO.2.0ut, and the
QueueOverflow from both queues to DrivelO.3.0ut. The user could choose to assign each queue status bit to
a different output, or not to assign them at all. These assignments are not vital to the operation of the
application.

NOTE: It is optional to the application, but most high-speed labeling applications use another sensor on the
label material (not shown in the application graphic in Figure 1) to sense the leading edge of the next label (or
the gap between labels). This sensor should be wired to Modulelnput.3 which is assigned to the
Index.0.SensorTrigger destination. The user can then adjust the Registration Offset of Index 0 to control the
amount of label “Hang Off” or “Hang Out” for the system. “Hang Off” is simply the distance that the label hangs
out past the peel plate when the labeling index is complete.

Graphical Interpretation

The following page contains a graphical depiction of how the user programs will function, and how they work
together. Each of the boxes depicts a user program. The diagrams inside the box show the process performed
by the specific program. Several lines then flow from one “program” box to the next. This indicates that some
data or signals are shared between those two programs.

The Program 0 box shows how the product sensor is used to activate Capture 0. When CaptureTriggered turns
on, the Capture.0.CapturedMasterPosition is loaded into Queue0 and Queuel. When the Queue.1l.QueueExit
function activates, Capture 0O is reset and the process is repeated again.

The Program 1 box then shows how the Queue.0.ExitPosition is loaded into Capture 1. Index 0 is then initiated
using the Capture 1 data. This process then happens all over again. It is important to recognize that Program
0 and Program 1 operate simultaneously allowing product to be sensed and captured in Program 0 while labels
are being applied in Program 1 at the same time.

The Program 2 box does not use any data or signals from the other two programs and therefore runs completely
independently. The program simply checks for either the increment or decrement inputs being on, and then
checks if the Coarse Adjust input is on. Then the specified amount is added to or subtracted from the
Queue.0.Offset parameter.

Following the flow chart, each user program is written and discussed in detail.

CONTROL <
TECHNIQUES

Program 0: Load Gueus and control Deadband Program 1: Apply Label and Load Part Reject Quaue

Qo
fa
: Capture 0 Doct Maagemmenat Capture 1 Fiscs Labat
Product Sansor N
Modulsinput1 Activate Triggered » Index 0
: caph tarPosttion »
: captursamasterPostion
: Resat aptu 3
ExitPoslflon
o
Deadband
QuensExt
.. Deadband
Program 2: Gueuwe 0 Length Increment/Decrement
et = Queus.Offest =
Coarse Adjust=0FF | == et — o0t
' QQueue 0 Length »
Decrement
Gueuad.Offest =
Coarse Adjust=0N Gusus0.Ofrest - 01
et = Gueuad.Offest =
Coarse Adjust=0OFF usue 0.Ofeet + 001
. QueueD Length
: Increment
Queus0.Offest =
Coarse Adjust=0N Queua0.Offest + 01

Figure 9 — Labeling Flow Chart

CONTROL
TECHNIQUES

Program 0 — Actual Program Code

"Program O (running on Task 0) -
"Description: High Speed Labeling Application -
"Filename(s): High Speed Labeler e

Capture.0._CaptureEnable=
ON
Capture.0.CaptureClear
Queue.0.QueueClear=0N
Queue.1.QueueClear=0N

Wait For Queue.O0.QueueEmpty
Queue .0.QueueCompareEnable=
ON
Queue.1.QueueCompareEnable=
ON

Home.O.Initiate

Wait For

Home .0 .CommandComplete
Program.1.Initiate
Program.2_Initiate

Do While TRUE

Wait For Capture.O.CaptureTriggered
Queue.0.Dataln=Capture.0.CapturedMasterPositi
on
Queue.1.Dataln=Capture.0.CapturedMasterPositi
on Wait For Queue.l.QueueExit

Queue.1.QueueRemove
Capture.0.CaptureCle
ar

Loop

Description of Program Code
Program O loads captured data into the labeling queue and the deadband queue. The first grouping of
instructions simply prepares the Capture and Queue objects to start the process. The Capture is enabled and
cleared so that the next product to pass the sensor will generate a position capture. The Queue is then cleared
to remove any residual data that may be in the queue, and the comparator internal to the queue is enabled so
that QueueExit functions will be activated.

11

CONTROL <
TECHNIQUES

The Home function is then initiated, and the program will wait until the home is complete before starting Programs
1 and 2, and then entering the main loop. Note that this program does not “Call” Programs 1 and 2, but rather
starts them. Since Programs 1 and 2 are assigned to different tasks, they will run simultaneously with Program
0. (For more information on multitasking, see Application Tool AT-5)

The main loop will run until the drive is disabled, or a Stop function is activated through an assignment. The first
product to pass the sensor will generate a position capture, and the CaptureTriggered function will activate.

When the CaptureTriggered turns on, the CapturedMasterPosition will be loaded into Queues 0 and 1 using the
“Dataln” command. The program then waits for the Queue.l.QueueExit function to activate providing the
deadband. When the Queue.1.QueueOffset distance has passed on the master encoder, the
Queue.1.QueueExit function will turn on. The program then removes the last piece of data from Queue 1 and
resets the capture object so that the next product to pass by the sensor will again generate a position capture.

The purpose of the deadband queue is to prevent “false triggering” on the product sensor. If the sensor signal
bounces, false data can be entered into the queue, and labels could be dispensed at the wrong time. Because
the deadband queue exit signal resets the position capture object, adjusting the deadband queue offset will adjust
the master distance that must pass before another product can be entered into the queue.

Note: The deadband queue offset should be longer than the product length, and shorter than the product
length plus the minimum product spacing.

Program 1 — Actual Program Code

"Program O (running on Task 0) -
"Description: High Speed Labeling Application -
"Filename(s): High Speed Labeler. e

Do While TRUE
Wait For Not Queue.O.QueueEmpty
Capture.l.CapturedMasterPosition=Queue.0.ExitPositi
on Index.0O.Initiate Using Capture.l
Wait For
Queue.0.QueueExit
Queue.0.QueueRemove

Loop

End

12

CONTROL <
TECHNIQUES

Description of Program Code
Program 1 handles the process of applying the labels to the product. This program is initiated by Program 0 and
runs in unison with Programs 0 and 2. The program will run until the drive is disabled or a stop function is
activated.

The first instruction waits until some data is entered into the queue (until the first product passes the sensor).
Once some data has been entered into the queue, the Queue.0.ExitPosition is loaded into Capture 1. The
Queue.0.ExitPostion is the sum of the captured master position when the product passed the sensor plus the
Queue.0.QueueOffset distance. The Queue.0.ExitPosition is loaded into the Capture 1 object so that the
ExitPosition is used as the exact starting point for the index. In order to guarantee that the index starts at the
right time (therefore ensuring accurate label placement), the “Using Capture” instruction is inserted after the
Index Initiate. By using the “Using Capture.l” instruction, the index can automatically adjust its profile to
compensate for any delay in getting started.

Index 0 is a synchronized index so that the index velocity is referenced to the master encoder velocity and
position. This allows the label to be dispensed at the proper velocity regardless of how fast the product is moving.

Once the Index is initiated, the motor waits until the master axis position reaches the Queue.0.ExitPostion
and then the index runs therefore applying the label. The program waits for the Queue.0.QueueEXxit function
to activate meaning that the product has passed the label head, and then discards the data related to the
passed bottle using the Queue.0.QueueRemove instruction.

Once the data for the labeled bottle is removed, program flow proceeds to the top of the loop and wait for the
next product. In most situations, there will already be more products in the queue, so immediately the next
ExitPosition is loaded into the Capture 1 object and the next index is initiated.

By using separate tasks to load the queue and apply the labels, products can be entered into the queue and
apply labels at the same time. This is the advantage of the PTi-210 multitasking controller.

Program 2 — Actual Program Code

"Program O (running on Task 0) -
"Description: High Speed Labeling Application -
"Filename(s): High Speed Labeler. -

13

CONTROL <
TECHNIQUES

Do While TRUE
Wait For (Drivelnput_4=0ON OR Drivelnput.5=0N)
IT (Drivelnput.4=0N) Then
IT (Drivelnput.6=0N) Then
Queue.0.QueueOffset=Queue.0.QueueOffset + 0.10

Else
Queue.0.QueueOffset=Queue.0.Queue0ffset + 0.01
Endif
Else
IT (Drivelnput.6=0N) Then
Queue.0.QueueOffset=Queue.0.QueueOffset - 0.10
Else
Queue.0.QueueOffset=Queue.0.QueueOffset - 0.01
Endif
Endif
Wait For (Drivelnput.4=0FF AND Drivelnput.5=0FF)
Loop
End

Description of Program Code
If the machine does not include an HMI or other device to modify system parameters, a task can be created
to Increment/Decrement the Queue Offset parameter using digital 1/0.

Program 2 is used to adjust the Queue.0.QueueOffset parameter. The QueueOffset determines when the label
will be applied to the product. If this value is not accurate, the label can be applied early or late which correlates
to a misplaced label.

The QueueOffset for the labeling queue is simply the distance between the product sensor and the label head.
On some machines, the product sensor may get bumped or moved. If this happens, the user typically does not
want to use the PC to upload the PTi-210 program and adjust the parameter accordingly. Therefore, a program
is created to use digital inputs to adjust the QueueOffset distance.

In this example, Drivelnput.4 is used to increment the QueueOffset, Drivelnput.5 to decrement the
QueueOffset, and Drivelnput.6 is a “Coarse Adjust” selector to magnify the amount of increment or decrement.

The program simply waits for either the increment or decrement inputs to be activated. It then checks to see if the
increment input was used (Drivelnput.4). If so, the program checks to see if the coarse adjust input is active
(Drivelnput.6). If coarse adjust is active, then 0.10 is added to the QueueOffset, otherwise 0.01 is added. If the
increment input was not active, then the program checks again for the coarse adjust input and either subtracts

14

CONTROL <
TECHNIQUES

0.10 or 0.01 from the QueueOffset.

Notice how the program waits until the inputs 4 and 5 are both off, therefore guaranteeing that the QueueOffset
is incremented or decremented only once each time the input is activated.

15

CONTROL <
TECHNIQUES

	Develop an application solution to accurately and repeatably place labels on moving products at high cycle-rates.
	The PTi-210 module can be easily configured to perform high-speed labeling applications. Essential features used in the PTi-210 are the Capture Object, the Queue Object, and Program Multitasking. Each of these features will be discussed individually, ...
	Capture Object
	The Capture Object allows the PTi-210 to accurately capture the position of the master encoder at the exact time a product passes the incoming product sensor. To do this, the product sensor must be assigned to any one of the digital inputs located on ...
	The sources and destinations associated with the capture object can either be accessed through the Assignments screen or through a user program. This application will access the capture sources and destinations using both of these methods to operate t...
	In order to capture the position of the master encoder when a product passes the sensor, the PTi-210 module digital input that the product sensor is wired to must be assigned to the CaptureActivate destination found on the PowerTools Studio Assignment...
	When the capture object is enabled, the first rising-edge of the CaptureActivate signal will engage the capture, and the Time, Motor Command Position, Motor Feedback Position, and the Master Position will be captured in less than 2 sec. Once the capt...
	Below is a timing diagram that details how the functions associated with the capture object operate.
	Queue Object
	The Queue is used in applications where multiple products exist between the incoming product sensor and the location where the process takes place (i.e. applying labels, bar code printing, vision inspection, part rejection, etc.). Up to eight Queue ob...
	Figure 4 – Queue Object

	The Queue object is used to store the captured master positions for each product that comes by the product sensor. Similar to the Capture Object, the Queue sources and destinations can be controlled through the assignments screen or in the User Program.
	Note: Because the Queue uses captured data to initiate the index to apply the label, the product must not move relative to the master encoder once it has passed the incoming product sensor. If the product does move with respect to the master encoder, ...
	The following parameters must be entered into the Queue Setup Screen:
	Name – Assign a name to each specific queue
	Queue Size - This is the maximum number of products that can be stored in the Queue at a time. If the number of products entered into the queue reaches this value, the QueueOvervflow flag will activate. This value should be greater than the maximum nu...
	Queue Offset - The Queue Offset is a value that is added to the data put into the queue (captured position of master encoder in this example). The sum of the two values is called the QueueExitPosn. When the Source parameter is equal to the QueueExitPo...
	Full Level - This is a flag that notifies the user that a certain number of products are in the queue. Use this flag to notify the user that the queue is running at a certain “capacity”.
	Source - The Source determines which parameter to compare to the QueueExitPosn to activate the QueueExit function. If set to FeedbackPosn, the QueueExitPosn is compared to the Motor Position Feedback parameter. If set to MasterPosn , then QueueExitPos...
	Below is an example of the Queue Setup screen. The example uses two queues. The first queue controls the label application, and the second controls a deadband on the product sensor.
	The label queue has a QueueSize of 12, indicating that there should never be more than 12 products between the product sensor and the label head. The QueueOffset is set to 10.0000 telling us that the distance between the sensor and the label head is 1...
	The deadband queue shows that there should never be more than 2 products in the queue, and that the QueueExit function will turn on 0.25 master units after the product passes the sensor. The deadband queue will be discussed further later in this appli...
	Figure 5 – Example Queuing Setup Screen

	Following is a detailed view of the internal workings of the queue object. It shows how each of the queue parameters is used and how each source and destination functions.
	Graphic with key dimensions and details
	Assignments Used
	Figure 8 – Assignments Screen

	The most important assignment used in this application is the ModuleInput.2 to Capture.0.CaptureActivate assignment. In this example, the product sensor is wired to ModuleInput.2. The sensor could be wired to any Module input, but NOT to a drive input...
	ModuleInput.1 is used to start Program0 which in-turn starts the other two programs.
	The Queue status bits are assigned to the Drive and Module Outputs to give the user some indication of how the queue is functioning. The example application has chosen to assign the QueueEmpty from both queues to DriveIO.1.Out (the first drive digital...
	NOTE: It is optional to the application, but most high-speed labeling applications use another sensor on the label material (not shown in the application graphic in Figure 1) to sense the leading edge of the next label (or the gap between labels). Thi...
	Graphical Interpretation
	The following page contains a graphical depiction of how the user programs will function, and how they work together. Each of the boxes depicts a user program. The diagrams inside the box show the process performed by the specific program. Several lin...
	The Program 0 box shows how the product sensor is used to activate Capture 0. When CaptureTriggered turns on, the Capture.0.CapturedMasterPosition is loaded into Queue0 and Queue1. When the Queue.1.QueueExit function activates, Capture 0 is reset and ...
	The Program 1 box then shows how the Queue.0.ExitPosition is loaded into Capture 1. Index 0 is then initiated using the Capture 1 data. This process then happens all over again. It is important to recognize that Program 0 and Program 1 operate simulta...
	The Program 2 box does not use any data or signals from the other two programs and therefore runs completely independently. The program simply checks for either the increment or decrement inputs being on, and then checks if the Coarse Adjust input is ...
	Following the flow chart, each user program is written and discussed in detail.
	Figure 9 – Labeling Flow Chart

	Description of Program Code
	Program 0 loads captured data into the labeling queue and the deadband queue. The first grouping of instructions simply prepares the Capture and Queue objects to start the process. The Capture is enabled and cleared so that the next product to pass t...
	The Home function is then initiated, and the program will wait until the home is complete before starting Programs 1 and 2, and then entering the main loop. Note that this program does not “Call” Programs 1 and 2, but rather starts them. Since Program...
	The main loop will run until the drive is disabled, or a Stop function is activated through an assignment. The first product to pass the sensor will generate a position capture, and the CaptureTriggered function will activate.
	When the CaptureTriggered turns on, the CapturedMasterPosition will be loaded into Queues 0 and 1 using the “DataIn” command. The program then waits for the Queue.1.QueueExit function to activate providing the deadband. When the Queue.1.QueueOffset di...
	The purpose of the deadband queue is to prevent “false triggering” on the product sensor. If the sensor signal bounces, false data can be entered into the queue, and labels could be dispensed at the wrong time. Because the deadband queue exit signal r...
	Description of Program Code
	Program 1 handles the process of applying the labels to the product. This program is initiated by Program 0 and runs in unison with Programs 0 and 2. The program will run until the drive is disabled or a stop function is activated.
	The first instruction waits until some data is entered into the queue (until the first product passes the sensor). Once some data has been entered into the queue, the Queue.0.ExitPosition is loaded into Capture 1. The Queue.0.ExitPostion is the sum of...
	Index 0 is a synchronized index so that the index velocity is referenced to the master encoder velocity and position. This allows the label to be dispensed at the proper velocity regardless of how fast the product is moving.
	Once the Index is initiated, the motor waits until the master axis position reaches the Queue.0.ExitPostion and then the index runs therefore applying the label. The program waits for the Queue.0.QueueExit function to activate meaning that the product...
	Once the data for the labeled bottle is removed, program flow proceeds to the top of the loop and wait for the next product. In most situations, there will already be more products in the queue, so immediately the next ExitPosition is loaded into the...
	By using separate tasks to load the queue and apply the labels, products can be entered into the queue and apply labels at the same time. This is the advantage of the PTi-210 multitasking controller.
	Do While TRUE
	Wait For (DriveInput.4=ON OR DriveInput.5=ON)
	If (DriveInput.4=ON) Then
	If (DriveInput.6=ON) Then
	Queue.0.QueueOffset=Queue.0.QueueOffset + 0.10
	Else
	Queue.0.QueueOffset=Queue.0.QueueOffset + 0.01
	Endif
	Else
	If (DriveInput.6=ON) Then
	Queue.0.QueueOffset=Queue.0.QueueOffset - 0.10
	Else
	Queue.0.QueueOffset=Queue.0.QueueOffset - 0.01
	Endif
	Endif
	Wait For (DriveInput.4=OFF AND DriveInput.5=OFF)
	Loop
	End
	Description of Program Code
	If the machine does not include an HMI or other device to modify system parameters, a task can be created to Increment/Decrement the Queue Offset parameter using digital I/O.
	Program 2 is used to adjust the Queue.0.QueueOffset parameter. The QueueOffset determines when the label will be applied to the product. If this value is not accurate, the label can be applied early or late which correlates to a misplaced label.
	The QueueOffset for the labeling queue is simply the distance between the product sensor and the label head. On some machines, the product sensor may get bumped or moved. If this happens, the user typically does not want to use the PC to upload the PT...
	In this example, DriveInput.4 is used to increment the QueueOffset, DriveInput.5 to decrement the QueueOffset, and DriveInput.6 is a “Coarse Adjust” selector to magnify the amount of increment or decrement.
	The program simply waits for either the increment or decrement inputs to be activated. It then checks to see if the increment input was used (DriveInput.4). If so, the program checks to see if the coarse adjust input is active (DriveInput.6). If coars...
	0.10 or 0.01 from the QueueOffset.
	Notice how the program waits until the inputs 4 and 5 are both off, therefore guaranteeing that the QueueOffset is incremented or decremented only once each time the input is activated.

